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When planning and analyzing sheet structure elements according to the "safe damage" 
principle, there is a need to estimate the influence of the reinforcing set on the stress 
intensity factor (SIF) at the crack apices. A survey of the research in this area, princi- 
pally for an isotropic plate with one crack, can be found in [1, 2], say. In practice, there 
are no investigations denoted to crack development around a hole in plates with point-attached 
reinforcing elements. 

On the basis of an asymptotic structureless theory of point connections, general repre- 
sentations are constructed below for solutions of this problem for an anisotropic plate with 
an elliptical hole. The problem is reduced to the combined solution of a system of singular 
equations in the unknown functions given on the crack contours and a system of linear al- 
gebraic equations in the forces being transmitted to the plate through the rivet. The in- 
fluence is investigation of anisotropy of the plate material, the hole shape, the stiffness 
and location of the reinforcing set, the rib damage on the SIF at the crack apices. Appropri- 
ate results for isotropic plates are obtained by passing to the limit in the anisotropy 
parameters in the numerical solution. 

i. Let us consider an anisotropic plate of constant thickness h weakened by an ellipti- 
cal hole A with semiaxes a, b and a system of smooth nonintersecting curvilinear through 
slits (cracks) Lj (j = i, k) (Fig. I). The plate is strengthened by m rectilinear stiffener 
ribs (stringers) attached to the plate by using rivets.* If not especially stipulated, we 
consider all the slits internal. 

Let us take the following simplifying assumptions recommended well in applications 
[1-3]: i) a plane stress state is realized in the plate; 2) the reinforcing system of linear 
type stringers, and their attenuation because of rivet arrangements is not considered; 3) the 
plate and reinforcing elements interact with each other in one plane and only at the bracket 
points; 4) all the rivets are identical, the rivet radius (adhesion area) r is small as 
compared with their spacing and other characteristic dimensions; 5) when the crack passes 
through the rivet hole we do not take account of the influence of this hole and its being 
filled by the rivet; 6) we simulate the action of the rivet: in the stringer by the action of 
a concentrated force applied to a point corresponding to the center of the rivet in a con- 
tinuous rib, and in the plate according to the structureless asymptotic theory of point 
connections [3] by the action of a concentrated force in the external zone and by the action 
of a concentrated force with a certain correction factor dependent on the kind of bracket in 
the near zone around the rivet. This zone has the order of a characteristic linear dimension 
of the adhesion area r; 7) each rivet is a linearly elastic spring connecting points of its 
axis of rotation belonging the fastening elements. The spring stiffness is identical in all 
directions and is known. The correction factor and the spring stiffness can be found either 
from the solution of the internal problem or experimentally [3, 4]. 

We limit ourselves to consideration of the case when an external load field in the 
plate, given by the forces X n + iY n on the hole outline and o~j at infinity, acts on an 
elastic system while concentrated forces Q~ = Q~exp [~(0~ + ~)], 0~ ~ Q~exp(iO~) are applied 
to the ends of the s-th rib. Here O s is the angle formed by the rib s with the axis x (see 
Fig. I). 

*We understand any technological operation or method of point fastening (welding, gluing, 
riveting, bolt connection, etc.) as a rivet connection, when the size of the adhesion area is 
small compared with the characteristic dimensions of the body and the bracket spacing. 
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Let N denote the total number of bracket points and T k = x h ~ iy k, ffh =Pi exp (ia~) , respec- 
tively, their coordinates and the unknown forces being transmitted from the stiffeners to the 
plate therein. We select the numbering so that the rivets along the reinforcing element with 
number s are arranged in increasing numerical order starting with Ns+ 1 to N s + n s (n s is the 
total number of rivets on the rib s), Ns+1 ~N~ns, NI ~0, N~+I=N. According to assump- 
tion 2, we have ~h = ~s(N~<k<N~4q, s ~ ~, m). The stress and displacement in the plate can 
be expressed in terms of two analytic functions ~(zu) [5]: 

(~ ,  T.~, .~) = 2 R0 E 6 4 ,  ~,,,, t )  ,i,~ (zu 
%7 = 1 

( . ,  ,,) = 2 r~o (t,u q,,) % (~,~), 

Z,., = ./: + ~l.vy , PV = al l 'St  - -  a IGPv + al~ qv  = a , . , pv  + a2._dt(. * - -  az6 , 

where ~v(zv) is the primitive for ~v(zv), ai3 are the strain coefficient from Hooke's law, 
and Pw are roots of the characteristic equation. 

Taking account of the simplifying assumptions and the superposition principle, we seed 
the function (I.I) in the form 

,q 

j = l  

H e r e  r i s  t h e  s o l u t i o n  f o r  a n  u n r e i n f o r e e d  p l a t e  w i t h  h o l e  A w i t h o u t  c r a c k s  w h i c h  s a t i s -  
f i e s  t h e  b o u n d a r y  c o n d i t i o n s  on  t h e  h o l e  o u t l i n e  a n d  a t  i n f i n i t y  a n d  c a n  b e  d e t e r m i n e d  b y  
u s i n g  known m e t h o d s  [ 5 ] . 

U s i n g  t h e  s o l u t i o n  o f  t h e  p r o b l e m  on t h e  a c t i o n  o f  a u n i t  c o n c e n t r a t e d  f o r c e  e x p ( i ~ )  a t  
a point r of an infinite anisotropic plate with elliptical hole A free from external forces 

[6] 

a, ~ o~,, (.~,,) ..~ ;~ + z q, ,~ I ;,, t > ,1, 

.~,, = ; , ,  (z , , , )  = , , _  ~~,~' , .~,, (oo) = oo,  

[ i ,  v -  - i : l . _ v  ~ ~t  v �9 [13.._ v 

and taking account of interaction of inclusions asymptotically by using the superposition 
principle, we set (see assumption 6) 
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q)$ (z~,} = ~%~ l)i~ qrw~ (zv). ( I. 4 ) 
h = l  

We will consider that ~Irv~(z~) = ~l~(zv, T~,%) everywhere except in the near zone at the k-th 
rivet [3]. 

An expression is later required for the displacement of the bracket points zk in the 
plate in terms of the potential ~v(zv). In this case we will understand the expression 
@,~vT,(T$) to be the arithmetic mean of values of the function ~uk(zu) at points zP~ corresponding 
to the points zp ~ ,rh I- Ar exp [i(~ ~-~ ~p)] (p = 0.|) under the affine mapping z v -= ]~e(z) -~,- Ftv[m (z). 
Here @~1~(zv) is the primitive function of ~Fv1~(z~); and A is the correction factor (see assumption 
6) that depends on the rivet material and its construction. The dependence of the force in 
the rivet on A turns out to be sufficiently weak [3], and, consequently, the errors in deter,, 
mining A has no substantial influence on the final result. 

We seek the function q)~(zv) in the form Of generalized Cauchy integrals whose kernels are 
fundamental solutions (I. 3) : 

a I Iv(.~ l (t) i~ o* (t) 
= - -  _ _  V"2 ([R "=~ 

f~),, (t) = - -  _ ~ . %  (O/,~'G (t),  M~ ( 0  ~,, cos q~ - -  s i .  ~l~, 

w h e r e  (-~(I) = {~w(t)[t  ~ L~; ] = ] ,  k} a r e  unknown  c o m p l e x  f u n c t i o n s  on  L,  a n d  dt~, = M~(t)ds ( d s  i s  
t h e  a r c  l e n g t h  e l e m e n t  o f  L ) ,  ~ = ~ ( t )  i s  t h e  a n g l e  b e t w e e n  t h e  n o r m a l  n t o  L a n d  t h e  p o i n t  t 
on the x axis. We direct the normal to the right in the positive traversal of L (see Fig. 
i). 

The functions (D~$(zv) (j = 2, 3) thus constructed satisfy the conditions X n = Yn = 0 on A and 
damp out at infinity. Therefore, selection of ~(z~) in the form (1.2) automatically assumes 
satisfaction of the external loading conditions everywhere except on L. 

2. The boundary conditions at the slits L free from external fores can be given the form 
[7] 

(t) (1) + (t,) + ~ ( 0  q~+ (t,) + %~- (t.4 = o, 

M~ (t) JlI~ (t i tt~--H-~ bo= I~--H:~ (2 .1 )  

(the plus (minus) refers to the left (right) edge of L). 

289 



o,.-I / , '  

/ // 
/ / / / ~  \ \ 

/ /  " - \  
Lo-, ,I 

2 

o 0,5 8 

Fig. 4 Fig. 5 

Substituting the limit values of the functions ~u(zL) from (1.2) and (1.4) into (2.1), 

we obtain (~(t) = Of(t)) 

I L ~lt-~'----~+ 's.{K'(t'x)Q(~)+K"(t'z)Q(~)}ds-t- h~lch(t) Ph=/(t)' 

K 1 ( l ,  "~) d s  = t [I, (.~) - -  b (t) q2 -- ~" l I a ( t )d ' [  1 2b(t)[ ~ ~,, dq.,.+b(t) dln - - ,, ,  q ,,,', ( ; , )~ ( ? ~ , - , )  + 

"Jr n la  ('~)a (t) d'~ 2 nlb (t) b (~)t/T 2 ~ l:dT 1 "J- 

~", (~l) q ( q , , . -  t) - ,.', (~,).~, ( c , E -  t) - ,.; (t..)~ ( ~ ,  - ,) 
7,oa (x) d~,, ] 

" , , , ( . ~ :  -~2 .= ..,- ( 2 . 2 )  

�9 , - -  n I a (t) b (T) d'c z 
U., (/, T) ds I l a ( t )  dht'q_"--~"--}-a('c)--a(t)dq2+ ~- 

" ~' (') / , ,  - ~, ' L . -  k, ,"i (~) ~, (?~., - ~ )  

l lb  (t) d'~ 1 nib (t) a (T) dT 2 n.2b('c ) d '~  I 

+ ' - - -  ' ~ l )  + "i 

,k (0 = %-~-{,, (t.) q,,,, (t,) + h (t) q% (t,) + %,'(~3],  

~' ~ ml ml (t~)}. ] (t) = b ~  {a--~) (])] (t ,)  + (t,) + 

The  k e r n e l s  K p ( t ,  r )  ( p  = 1 ,  2)  a r e  c o n t i n u o u s  a c c o r d i n g  t o  t h e  a s s u m p t i o n s  r e l a t i v e  t o  L.  

I t  i s  n e c e s s a r y  t o  s u p p l e m e n t  ( 2 . 2 )  w i t h  c o n d i t i o n s  f o r  u n i q u e n e s s  o f  t h e  d i s p l a c e m e n t s  
d u r i n g  t r a v e r s a l  o f  e a c h  c r a c k  L3: 

.f (-2. ( 0  d-q = 0 (] = 1, k). ( 2 . 3 )  
L i 

Let u(z, O) denote the plate displacement at the point z in the direction of the vector exp( i~ ) .  
Then from the compatibility conditions for the rib and plate displacements at the bracket 

i } points u (T j+t ,  0.) - -  u ('~J, (}~) 1~ j + '  - -  ~J[ s+: 
h = j + l  

a n d  t h e  s t i f f e n e r  e q u i l i b r i u m  c o n d i t i o n s  we f i n d  t h e  m i s s i n g  N e q u a t i o n s  t o  d e t e r m i n e  t h e  

f o r c e s  Pk : 

h =i 
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t ( ,  (~) ~,~ = 4 iA~ ( ~ )  in 111 _ o. d ~  - -  ~ (n  A., (<,) in 1]~ ~ d ~  + 

~'~' A ~ . . . . . .  2 - -  + b ( ~ ) ~ A ~ ( % ) , ~ ~  ~d.+ ~ ~ + b ( ~ )  - dT~+ 

,~, I ~ 1 ~ ( ~  n ~ -  ~) ;~, + % -  ~) ~:1 ~ = T ) ) ~  =~1_ ~ (~) A~(O~),~h~ ~ E e ~ ,  + 
--, ,=1 (~-';~- 0 ~ +~ J 

t ] 

+ I ~ + ~ - ' d  I H ( k - - / ) ' Z ' * '  H(z)  = { 0'1, x~<O,x > O, 

= ,v., + ~. x , + l -  ~ (~ = ~-DT); ( 2 . s )  
N S + l  
_ = ~ - Q .  (~ = V ~ ) .  

j=Ns+ I 

Here E s, F s are the Young's modulus and cross-sectional area of the s-th rib, 6Ok is the 
Kronecker delta, and q is the pliability of the springs simulating the rivets. Sample form- 
ulas to determine q are given in [4], say, on the basis of experimental data. 

Limit cases of the problem under consideration are: a) reinforced half-plane (x > 0) 
with a system of curvilinear slits (b/a ~ ~); b) reinforced infinite plate with a rectilinear 
slit A = {Ix[ < a; y = 0} and a system of curvilinear slits Lj(b/a = 0). 

3. According to the assumptions relative to the slits L~(j = I, k), (2.2) is a singular 
integral equation in fl(t). Its index is +I. The solution of (2~ under the additional 
constraints (2.3) in the class of functions 

fl(t) = %r --  13~) -1/2, t = #([3) ~ L~, (3.  l )  

where X3(fl) are bounded, H61der-continuous functions in [-I, i], exists and is unique [8]. 

By using the Gauss-Chebyshev quadrature formulas we reduce the solution of (2.2)-(2.5) 
to the solution of a system of linear algebraic equations in Pk(k = I, N) and approximate 
values of the desired functions ZJ(~) (] = ], k) at the Chebyshev nodes ~i = cos ((2i -- J)~/(231)) (i 
----I, ~) (see [9], say). 

If the system (2.2)-(2.5) is solved and the values XJ(+I) are determined, then by using 

the asymptotic formulas ~ v  (zv) ~ -+- 2-~/zZ{ { -+ - '~$ (~J )  /(zv - -  cv)~'~/a(v = J, 2), %~ = Z ~ ( ~  J), %~" = 

. . . . .  dT{ 
-- a (c) %J -- b (c) Z~, ~$ = d'-~- we find the stress distribution and the SIF of the separation 

and shear stresses k1(e)=]imon }/.~r, k= (c) ----- lirn Tn ~r at the apices c-----~3(-~-~) of the cracks 
~-)c t-)c 

L 3. Here t is a point on the continuation of the crack beyond the tip c along the tangent; 

r = It - c[. 

If the slit L~ emerges, say, with the tip a p = rP(-l) at the controls of the hole A, 
then the condition of uniqueness of the displacement (2.3) for j = p should be discarded and 
the corresponding potential (1.5) refined. According to [9], we execute the refinement by 
using the condition of boundedness of the solution at the point a p. Consequently 

( {[~ (~, T) _ ~ (~, ~.)] 9.~ (~) d~ + [Q~ (~, ~) - Q~ (., ~)1 ~ .  (~)d~}, 
Lp 

1 
]O 1 (7.,.~ "1[) = '111 - -  ~1 

l I ' H 
- -~f i l  

This will result in corresponding changes in the integrals in Lp 

I E0 50 ;i('-;,%)' QI(z,T)= ;,(,_;~%) 1]_;, 

1 --~1112 
i n  ( 2 . 2 )  a n d  ( 2 . 4 ) .  
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TABLE I 

6 M=8 M=16  [10] 6 M = 8  M = I 6  [t0] 

0,01 
0,04 
0,06 
O,i 

3,288 
3,092 
2,976 
2,769 

3,292 
3,096 
2,979 
2,772 

3,291 
3,095 
2,978 
2,771 

,4 i,883 
1,305 
i,030 
0,779 

t ,885 
1,306 
/ ,031 
O, 780 

1,884 
1,306 
i,030 

The numerical solution of the equations that occur on the edge slit ~ will be sought, 
as before, in the class of functions (3.1). To close the obtained system of algebraic equa- 
tions we will take the additional condition XP(-I) = 0 that eliminates the singularity of the 
function ~(t) at the point a p. Such a simplified method yields completely satisfactory 
results for internal apices of edge cracks [9]. 

4 Presented below for uniform tension by forces ay = a are certain results of computing 
the separation SIP at crack apices around an elliptical hole A in glass-epoxy composite plate 
(E l = 53.84 GPa, E 2 = 17.95 GPa, GIz = 8.63 GPa, v I = 0.25) and isotropic material (v = 0.33) 
reinforced along the line x = x k identical stringers free from external forces. The bracket 
points are arranged symmetrically relative to the x axis with constant spacing p. The x axis 
passes midway between the rivets and the number of rivets on each stringer is identical and 
equal to 2n. The pliability of the bracket q was taken equal to zero, r/a = 0.025, p/a = 0.5 
and the correction factor is A = i. Data for an isotropic material are obtained by passing 
to the limit in the anisotropy parameters in the numerical solution. 

Let an anisotropic plate (the principal direction of anisotropy E I of the plate material 
makes the angle ~ = 0 with the x axis) contain an internal crack L = {T(~) = a ~ 2s-~ l(i + ~)ll~I 
<I} and be reinforced by one stringer passing through the middle of a connector (x I = a + 
s). Presented in Fig. 2 are magnitudes of the separation correction SIP at the left apex of 
the crack k* ~ k1(--i)/(o]/~-f ) as a function of n for m = (a - b)/(a + b) = 0 (circular hole), 
~/a = i and different values of the relative rib stiffness U = EIah/EIF 1 = I, 0.5, 0.25, 0 
(curves 1-4, respectively). The solid (dashed) lines refer to s/a = 0.1(0.5). For n > 15 
the values of k* vary insignificantly, i.e., no development can be achieved as the number of 
bracket points increases. The effectiveness of the reinforcement diminishes noticeably as U 
and the bracket spacing p increase. 

Let one or two cracks LI,2 = {TI,2(~) ~ -~_[a ~ l(l ~ ~)]I I~l < i} from the outline of a hole 
A in an anisotropic reinforced plate. 

Represented in Figs. 3 and 4 is the dependence .of the separation correction SIP for two 
cracks L 1 2 and two reinforcing elements (xl, z = i2a) at the apices of the cracks K = k1(1) / 
k~ ( k~ = a ~(a + 2l) is the separation SIF at the vertices of an equivalent crack L* = {Ixl < 
a ~ 21;y = 0} in an unreinforced plate) on 6 = 22/a for m = 0, U = 0.25, 0 (curves I and 2) and 
U = 0.25, m = 0, i, -0.9 (curves 1-3), respectively. Here and henceforth, the solid (dashed) 
lines refer to ~ z 0 (~/2), n = 9. For small cracks (6 < I)K depends substantially on the 
degree of material anisotropy EJE 2 and the hole shape. For 6 > 2 the influence of the hole 
shape on K is weak. As EJE 2 increases, the difference between the values of K for ~ = 0 and 
~/2 grows. Even for strongly prolate ellipses with a small opening the value of from the 
separation SIP for an equivalent crack in a plate with the same reinforcement. Therefore, 
the defects being considered cannot always be replaced by equivalent cracks, as is done in 
practice, in computations of reinforced plates. The minimal value of K is reached for cracks 
setting at approximately 0.25a behind the reinforcing element. 

Presented in Fig. 5 are values of K ~ kl(1)/k I (k[ = ~ ~ ~ )  for one edge crack and 
three reinforcing elements (xl, 2 = il.4a, x 3 = 4.2a, U = 0.5), i) a stringer with number i is 
fractured along the middle, 2) undamaged stringer. The value of k1(l ) in the case of a 
damaged reinforcement is increased considerably and becomes even higher than the corresponding 
values of k I for an unreinforced plate until the crack turns out to be in the zone of in- 
fluence of the adjacent stringer. Therefore, reinforcement damage makes a structure more 
susceptible to fracture. 

Computations indicate the efficiency of the selected representations and the computation 
algorithm. The values of k I in Figs. 2'5 are in agreement in the first three significant 
figures for M z 16. For instance, given for conversion in Table I are values of kJ(a~ at 
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the apex of an edge crack L I starting from the contour of a circular hole in an unreinforced 
isotropic plate (in the computations it was assumed that ~I = 0.98i and ~2 = 1.02i) :[or M = 
8.16 and appropriate values from [i0]. 

For m ~ I (a hole is generated in the slit) the results of computations for an anisotro- 
pic material agree with the data of [II] while for an isotropic material they are in good 
agreement with results of a computation and experiment [4, 12]. The maximal error in deter- 
mining k I with respect to the computational results [4] where the structure theory of rivets 
was used, is -2%. 
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